解二元一次方程的万能公式(解二元一次方程组教案)

导读大家好,霖霖来为大家解答以上问题。解二元一次方程的万能公式,解二元一次方程组教案很多人还不知道,现在让我们一起来看看吧!  解二元...

大家好,霖霖来为大家解答以上问题。解二元一次方程的万能公式,解二元一次方程组教案很多人还不知道,现在让我们一起来看看吧!

  解二元一次方程组教案 篇1

  教学目标:

  1.会用加减消元法解二元一次方程组.

  2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组.

  3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法.

  教学重点:

  加减消元法的理解与掌握

  教学难点:

  加减消元法的灵活运用

  教学方法:

  引导探索法,学生讨论交流

  教学过程:

  一、情境创设

  买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?

  设苹果汁、橙汁单价为x元,y元.

  我们可以列出方程3x+2y=23

  5x+2y=33

  问:如何解这个方程组?

  二、探索活动

  活动一:

  1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?

  2、这些方法与代入消元法有何异同?

  3、这个方程组有何特点?

  解法一:3x+2y=23①

  5x+2y=33②

  由①式得③

  把③式代入②式

  33

  解这个方程得:y=4

  把y=4代入③式

  则

  所以原方程组的解是x=5

  y=4

  解法二:3x+2y=23①

  5x+2y=33②

  由①—②式:

  3x+2y-(5x+2y)=23-33

  3x-5x=-10

  解这个方程得:x=5

  把x=5代入①式,

  3×5+2y=23

  解这个方程得y=4

  所以原方程组的解是x=5

  y=4

  把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法.

  三、例题教学:

  例1.解方程组x+2y=1①

  3x-2y=5②

  解:①+②得,4x=6

  将代入①,得

  解这个方程得:

  所以原方程组的解是

  巩固练习(一):练一练1.(1)

  例2.解方程组5x-2y=4①

  2x-3y=-5②

  解:①×3,得

  15x-6y=12③

  ②×3,得

  4x-6y=-10④

  ③—④,得:

  11x=22

  解这个方程得x=2

  将x=2代入①,得

  5×2-2y=4

  解这个方程得:y=3

  所以原方程组的解是x=2

  y=3

  巩固练习(二):练一练1.(2)(3)(4)2.

  四、思维拓展:

  解方程组:

  五、小结:

  1、掌握加减消元法解二元一次方程组

  2、灵活选用代入消元法和加减消元法解二元一次方程组

  解二元一次方程组教案 篇2

  教学目的

  1.使学生了解二元一次方程,二元一次方程组的概念。

  2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。

  3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。

  重点:

  了解二元一次方程、二元一次方程组以及二元一次方程组的解的含

  难点:

  了解二元一次方程组的解的含义。

  导学提纲:

  1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一个数是否是这个方程的'解?

  2.阅读教材问题1思考下列问题

  ⑴.能否用我们已经学过的知识来解决这个问题?

  用算术法解答

  用一元一次方程解答

  解后反思:既然是求两个未知量,那么能不能同时设两个未知数?

  ⑵.此问题中有两个问题如果分别设为x、y,怎样列式呢?(完成教材中的表格)

  ⑶.对于方程x十y=73x+y=17请思考下列问题

  ①它们是一元一次方程吗?

  ②这两个方程有没有共同特点/若有,有河共同特点?

  ③类比一元一次方程的概念,总结二元一次方程的概念

  3.从教材中找出二元一次方程和二元一次方程组的概念(结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释)

  注意二元一次方程组的书写方式,方程组中的各方程中,同一个字母必须代表同一个量

  4.与是否满足方程①与是否满足方程②类比一元一次方程的解总结二元一次方程组的解的概念

  注意:(1)未知数的值必须同时满足两个方程时,才是方程组的解.若取,时,它们能满足方程①,但不满足方程②,所以它们不是方程组的解.

  (2)二元一次方程组的解是一对数,而不是一个数,所以必须把与合起来,才是方程组的解.

  5.思考讨论在方程组①②③④

  ⑤⑥中,属于二元一次方程组的有

  达标检测:

  1.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组:

  (1)甲数的比乙数的2倍少7:_____________________________;

  (2)摩托车的时速是货车的倍,它们的速度之和是200千米/时:________;

  (3)某种时装的价格是某种皮装的价格的1.4倍,5件皮装比3件时装贵700元:______________________________.

  2.下列方程是二元一次方程的是()

  A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2

  3.下列不是二元一次方程组的是()

  x+3y=5m+3m=152x+3x=0m+n=5

  A、B、C、D、

  2x-3x=3+=3-5y=02m+n=6

  x=2

  4.在方程3x-ky=0中,如果是它的一个解,则k的值为_______.

  y=-3

  5.若mxy+9x+3y=-9是关于x、y的二元一次方程,则m=_______n=_______.

本文到此结束,希望对大家有所帮助。

免责声明:本文由用户上传,如有侵权请联系删除!