投影仪成像原理光路图(投影仪成像原理)

导读大家好,阿林来为大家解答以上问题,投影仪成像原理光路图,投影仪成像原理很多人还不知道,现在让我们一起来看看吧!摘要:投影仪已广泛应

大家好,阿林来为大家解答以上问题,投影仪成像原理光路图,投影仪成像原理很多人还不知道,现在让我们一起来看看吧!

摘要:投影仪已广泛应用于演示和家庭影院。投影仪内部有三种生成投影图像的组件。根据所用元件的种类和数量,产品的特性也有所不同。投影仪的工作原理是,投影仪先将光线照射到图像显示元件上产生图像,然后通过透镜进行投影。投影仪应用广泛,不同的场合对投影仪有不同的要求。

【投影仪原理】投影仪的原理是什么?投影仪成像原理投影仪原理介绍

投影仪是一种用于放大和显示图像的投影设备。目前,它已被用于会议室演示和通过连接家中的DVD播放器和其他设备在大屏幕上观看电影。在电影院,也开始取代旧胶片的数字电影放映机被用作硬盘数字数据的屏幕。

投影仪的原理是什么?

说到投影仪成像原理,基本上所有类型的投影仪都是一样的。投影仪将光照射到图像显示元件上以产生图像,然后通过透镜将其投影。投影仪的图像显示元件包括使用光透射来产生图像的透射型和使用反射光来产生图像的反射型。无论是哪一种,投影灯光都分为红、绿、蓝三种颜色,然后产生各种颜色的图像。因为元素本身只能显示单色,所以需要用三个元素分别生成三个颜色分量。然后,三色图像通过棱镜合成一幅图像,最后通过透镜投射到屏幕上。

图1:投影仪示意图

使用图像显示元件,分别产生红色、绿色和蓝色图像,然后通过合成进行投影。

图像元素包括三种类型(参见图2)。其中,有两种类型的液晶,即使用光透射液晶的透射型液晶元件和使用反射光的反射型液晶元件。后一种元件是DMD(数字微镜元件),它为每个像素使用一个微镜,通过改变反射光的方向来生成图像。

图2:三种图像显示元素

它是分别使用液晶的透射型液晶元件和反射型液晶元件,以及使用反射镜来产生像素的DMD。这三个组件各有利弊。

图3:反射式液晶元件采取的措施

投影仪使用的反射式液晶元件一般采取以下三种措施:(1)无机材料制成的取向膜易于控制液晶;(2)通过减小液晶层的厚度来提高响应速度;(3)通过消除液晶中的屏障,即间隔物,提高了光的利用效率。

与液晶面板结构相同的透射元件

通过A型液晶元件产生图像的原理与已经被广泛用作普通计算机显示屏的液晶显示器的原理相同。在日本,精工爱普生和索尼已经开始提供这种组件。投影仪中使用的液晶元件由高温多晶硅液晶制成。因为它不同于普通的液晶显示器,小像素产生的图像被放大到几百倍再投影,所以极其微小的缺陷放大后会非常明显,制造时需要相当高的精度。

透射式液晶元件的工作原理与液晶显示器完全相同。上电后液晶分子的方向会发生变化,液晶分子的方向会调整是否让光通过,从而显示白色和黑色。

它的缺点是光的利用效率差。这是因为透射式液晶面板由多层构成,因此只有大约30%的入射光可以通过。

透射型液晶元件的尺寸变得越来越小。一般透射式液晶元件在0.7-0.8英寸之间,但为了控制成本,主流投影机使用的元件都在0.7英寸左右。然而,元件越小,光透过的面积越小,因此图像越暗。因此,当使用小元件时,为了保证亮度,投影灯应该更大,并且为了提高亮度

透射型液晶元件会由于长期使用而老化。这是因为用于调节液晶分子方向的取向膜和用于控制光线方向的偏振片是由有机材料制成的。由于投射灯功率大,不仅发热,而且光线强,会引起有机物质发生化学变化。由于投射灯的使用模式和用户的使用方法,材料的老化程度差异很大。

适用于视频回放的反射型液晶元件

在可以实现高图像质量的液晶元件中,有一种反射型液晶。最大的特点就是视频显示的响应速度非常快,而且因为对比度高,黑色显示的非常清晰。这种液晶适用于显示电影和其他视频。

目前,已有三家日本公司成功开发了这一组件。JVC、日立和索尼分别在1997年、2001年和2003年发布了这种组件。JVC的组件名是“D-ILA”,索尼的组件名是“SXRD”。

反射型液晶元件比透射型液晶元件具有更高的光利用效率,因此可以制造高亮度的投影仪。液晶部分下面有一层反射光线的薄膜,可以反射60-70%的光线。高对比度是由于当电压关闭时液晶的垂直排列。这种方法称为垂直定向。当没有施加压力时,它显示为黑色,因此可以更清楚地显示黑色。当显示暗画面时,反射式液晶元件的优点更容易理解。当黑色的衣服和头发显示在黑暗的屏幕上时,它可以不受背景的影响而显示出来。

投影仪中使用的反射式液晶元件的高响应速度是由于在液晶部分采取了一些措施(见图3)。通过将液晶层减小到小于2m,提高了响应速度。一般来说,为了保证液晶面板的厚度均匀,需要在液晶中加入一种叫做隔离物的辅助材料。该隔离物的厚度是液晶层的厚度。而JVC的D-ILA和索尼的SXRD在制造方法和包装材料上都下了很大功夫。

  如何使用透镜来进行反射

  每个像素一个微镜,反射光线。

  投影仪有的还使用微镜元件。这就是美国德州仪器开发的DMD。由于DMD专利归该公司所有,因此只有该公司进行生产和供货。采用DMD的投影仪称为DLP(数字光处理)投影仪。

  DMD的每一个像素都是一面镜子,在半导体底板上排列着和像素一样多的微镜。微镜边长仅14μm。使用微镜最多的DMD是大约80万像素的型号。通过在0.7英寸(对角线长度)底板上的大约80万枚微镜逐枚动作来显示图像。

  每一枚微镜以对角线方向为轴左右倾斜。采用静电引力移动微镜。微镜本身施加20V电压,在对角线一端下方施加5V,另一个施加0V电压后,由于0V一端的电位差较大,因此微镜就将向这一侧偏移。

  图4:DMD结构(左),以及用DMD生成图像的原理(右)

  利用微镜角度改变反光方向。显示白色时设置成反射光朝向镜头的角度。显示黑色时光线则光被吸收板所吸收。

  通过倾斜DMD的方向来改变光线反射角度,来实现白色和黑色(图4右)。当微镜向某个方向倾斜10度时,通过调整光线将反射到镜头方向,反方向倾斜10度时光线将反射到光吸收板上。这样一来,光线朝镜头反射时显示白色,朝光吸收板反射时显示黑色。中间色调则通过在极短时间内反复切换白色和黑色来实现。

  与液晶元件相比,DMD的像素具有更高的图像显示性能。首先是对比度高。对比度最高可达3000:1。另外对信号的响应速度快。响应速度约为15微秒,差不多是液晶的1000倍。响应速度越快,越能平滑地显示视频图像。而且DMD的光利用效率更好。由于像素由微镜组成,因此照射来的光线有9成会反射出去。不过,虽然性能高,但每个像素的均价也高。

  图5:投影仪种类和用途

  包括4类。单板式DLP投影仪和使用3枚透过型液晶元件的液晶投影仪是面向演示及 家庭影院 的普及型产品。使用反射型液晶的液晶投影仪和3板式DLP投影仪则是面向电影院数字放映机和大厅及各种大众活动的高价位产品。

  图6:单板式DLP投影仪的结构

  只使用一枚DMD的单板式DLP投影仪通过高速旋转彩色滤色器,按顺序分别向DMD照射红、绿、蓝三色光。DMD连续显示各色图像,然后通过镜头进行投影。根据日本德州仪器的公开资料制作而成。

  适合小型化的单板投影仪

  适合小型化的单板式投影仪

  投影仪使用的元件有3类,而实际采用这些元件的产品则分为如下4类:

  (1)只使用1枚DMD的单板式DLP投影仪;

  (2)使用3枚透过型液晶的液晶投影仪;

  (3)使用3枚DMD的3板式DLP投影仪和

  (4)使用3枚反射型液晶元件的液晶投影仪。从显示红、绿、蓝三色图像的投影仪原理看,基本上都是3板式。然而像DMD一样图像显示性能较高的元件有1枚即可构成投影仪。DMD的单枚价格较高,也是采用单板式设计的原因之一。使用DMD的DLP投影仪除部分大型产品外基本上都是单板式(见图5)。

  单板式DLP投影仪并不预先分离光线,而是通过由红、绿、蓝三色构成一种光线的彩色滤色器,按顺序切换三种颜色(见图6)。彩色滤色器每秒旋转60~180次。通过彩色滤色器的光线照射到DMD上。DMD高速连续显示三色图像,照射红色光时显示红色成分的图像,照射绿色光时显示绿色成分的图像。被DMD反射的三色图像通过镜头进行投影。

  单板式DLP投影仪由于对比度高、响应速度快,因此适合于家庭影院等视频显示领域。而且光学系统不需太大,因此设计小巧、重量轻,且便携性强,因此还适合于与电脑一起携带使用(照片1)。

  不过,也有人指出单板式DLP投影仪使用彩色滤色器连续显示三色图像也产生了相应的缺点。这就是高速的图像显示而导致颜色分离的“彩虹现象”。有人指出颜色分离会“觉得晃眼睛”。面向家庭影院的产品通过提高彩色滤色器的旋转速度,并将滤色器分为6个,或除三色外再加上白色等方法减轻了这种分色现象。

  照片1:小型DLP投影仪

  日本PLUS Vision推出的DLP投影仪“V-1100”。重约1.0kg,尺寸为宽180×高45×纵长141mm,一只手就能拿得住。

  用特殊镜片进行分光

  采用投影仪基本结构即3板式的投影仪包括如下3类:(1)普及型即采用透过型液晶的产品;(2)采用DMD的高价产品和采用反射型液晶元件的高价产品。

  下面以液晶投影仪为例介绍一下此类产品的结构(图7)。首先要将对身体有害的紫外线和影响到温度的红外线从投影灯发出的光线中去除掉。然后根据波长将光分离成红、绿、蓝3色。分离光线时采用一种名为“分色镜”的特殊镜片。分色镜具有只让特定波长的光通过而反射其他光线、或者只反射特定光而让剩余光线通过的特性。先分离红色,接着分离绿色,最后剩下的就是蓝色光。有的产品则按蓝、绿、红的顺序进行分离。由图像元件生成3色图像,然后利用棱镜将这些光进行合成。为了形成自然色,按红3、绿6、蓝1的比例对光线进行合成。

  图7:液晶投影仪的结构

  投影灯发出的光线首先被分割成紫外线和红外线。然后利用名为分色镜(Dichroic Mirror)的特殊镜片将其分成红、绿、蓝3种光。生成3色图像后,利用棱镜合成后进行投影。

  图8:梯形失真补偿技术

  减少元件上造成梯形失真部分的像素。分辨率会因此而下降。

  各种场合对投影仪的要求不同

  会议室使用和家庭使用的要求不同

  投影仪根据元件种类及采用的元件数量不同,特点也各不相同。不过,实际产品除元件外还根据用途进行了调整。

  投影仪的用途大体分为3个方面。首先是会议室等场合使用的演示用途,第二个是在家庭中观看电影的家庭影院用途,第三个则是电影院等场合中放映数字电影的数码放映机。

  在产品数量最多的演示和家庭影院方面,12万~60万日元左右的小型产品已经广泛使用。此类产品的销量方面,采用透过型液晶元件的约为8成,采用DMD的约为2成。在会议室和各类活动中,电影院使用的是采用3枚DMD的DLP投影仪和采用反射型液晶元件的投影仪。

  是否重视亮度,是否重视对比度及色彩表现效果,因不同的用途而异。演示用投影仪主要设想在会议室使用。在会议室,为了做记录,周围环境必须要达到一定的亮度。因此对投影仪有亮度要求。如果亮度达到1500ANSI流明到2000ANSI流明之间,即便周围光线明亮,也可以进行正常投影。而且由于需要显示表格等细小文字,因此还要示具有较高的分辨率。最近大多都达到了与电脑显示器相同的XGA(1024×768像素)规格以上。

  另一方面,家庭影院方面,由于可以降低房间亮度,因此亮度要求较低。取而代之的是对比度能否能够更深地表现黑色,能够充分表现出对于表示肌肤非常重要的红色。为了提高色彩表现效果,“通过改进分光镜的制造工艺,能够充分表现出红色和绿色效果”(三洋电机消费者企业集团AV解决方案公司投影仪业务部商品规划部商品规划科科长杉村一人)。另外,使用反射型液晶元件的高价投影仪已经开始采用光波分布接近自然光、色彩表现效果较好的佳能投影灯。

  通过加大像素间隔,修正显示图像

  对于投影仪来说,虽然与其他显示设备一样画质非常重要,但是也存在因“投影”方式而产生的投影仪特有的问题。一是必须调整投影角度,二是必须在屏幕与投影仪之间留出没有障碍物的空间。

  投影仪会因投影角度不正而使图像出现梯形失真(见图8上)。房间狭小时有时就要将投影仪横向错开放置,或者必须从斜下方投影。如果横向投影,就会产生左右加宽的梯形,而从斜下方向上投影时则会形成上宽下窄的梯形。

  这种梯形校正技术目前已经成熟,并且已经应用于大多数产品中(见图8下)。该技术称为“梯形失真校正”。

  以投影仪投影出来的画面横纵比为4:3为例进行说明。上宽下窄的梯形根据下线,将画面校正成4:3的长方形。为了实现这一点,就要改变元件生成的图像。即在元件上加大直接投影时会变宽的那部分的像素间隔。也就是说,通过将元件上的显示调整成梯形,而使投影图像显示成长方形。不过,像素间隔加大的那部分的分辨率会有所下降。

  各种场合对投影仪的要求不同

  而且校正技术也在不断进步。有的产品不仅上下和左右变宽时都能校正,而且投影时还能够通过倾斜传感器检测机身角度,自动校正图像失真。

  有一种独特方式就是NEC ViewTechnology开发的校正技术。利用附带的遥控器指定显示画面的4个角,按一下设置按钮,就能校正成由指定的4个点构成的四角形。该公司利用自主开发的芯片实现了这种校正技术。

  另外,还在缩短屏幕和投影仪之间的距离上进行了研发。因为要想不把中间的障碍物投影上去,投影距离越短越好。最近镜头焦距较短的产品需求日趋旺盛。短焦镜头目前主要用于高分辨率的高价机型中。不过,由于镜头昂贵,因此最初只应用于高性能的高价产品中。最近由于镜头价格已逐步降低,因此两年前开始逐渐应用于小型产品中。

  此外,还在开发不使用镜头而实现短焦的产品。这就是NEC ViewTechnology开发的利用镜片反射光线来调节角度的DLP投影仪“WT600”。按顺序将光线反射到4枚非球面镜片上进行投影。由于可以将投影仪放置在演示人员和屏幕之间,因此不会投影出人影。“投产方面最大的困难是提高亮度。目前已通过改进彩色滤色器,实现了1200ANSI流明”

  NEC ViewTechnology推出的DLP投影仪“WT600”。60英寸(0.9×1.2m)屏幕的投影距离为26cm。

本文到此结束,希望对大家有所帮助。

免责声明:本文由用户上传,如有侵权请联系删除!